Questions

Q1.

8.3 cm

Work out the value of x.
Give your answer correct to 1 decimal place.

Q2.

Calculate the value of x.
Give your answer correct to 1 decimal place.
$x=$ \qquad
(Total for question = 3 marks)
Diagram NOT
accurately drawn
x

Diagram NOT
accurately drawn
$x=$
(Total for question = 3 marks)

Q3.

Diagram NOT
accurately drawn

Work out the value of x.
Give your answer correct to 1 decimal place.
$x=$ \qquad
(Total for question = 3 marks)

Q4.

Calculate the value of x.
Give your answer correct to 3 significant figures.

Diagram NOT accurately drawn

Q5.

Diagram NOT
accurately drawn

Calculate the value of x.
Give your answer correct to 3 significant figures.
$x=$ \qquad

Q6.

Diagram NOT accurately drawn

Calculate the length of $P Q$.
Give your answer correct to 3 significant figures.

Q7.

Diagram NOT
accurately drawn

Calculate the length of $P Q$.
Give your answer correct to 3 significant figures.
cm
(Total for Question is $\mathbf{3}$ marks)

Q8.

Diagram NOT
accurately drawn

The diagram shows a cuboid $A B C D E F G H$.
$A B=5 \mathrm{~cm}$
$B C=7 \mathrm{~cm}$
$A E=3 \mathrm{~cm}$
(a) Calculate the length of $A G$.

Give your answer correct to 3 significant figures.

Calculate the size of the angle between $A G$ and the plane $A B C D$. Give your answer correct to 3 significant figures.

Q9.

$A B C D E F$ is a triangular prism.
$A B=9 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and $A E=12 \mathrm{~cm}$.
Angle $A B C=90^{\circ}$
M is the midpoint of $C D$.
Calculate the size of the angle between $A M$ and the plane $B C D F$.
Give your answer correct to 1 decimal place.

Q10.

A, B and C are 3 villages.
B is 6.4 km due east of A.
C is 3.8 km from A on a bearing of 210°
Calculate the bearing of B from C.
Give your answer correct to the nearest degree.
Show your working clearly.

Q11.

Here is a triangle QRS.

Diagram NOT
accurately drawn
$S Q=15 \mathrm{~cm}$
Angle $R S Q=90^{\circ}$
Area of triangle $Q R S=60 \mathrm{~cm}^{2}$
Work out the size of angle SQR.
Give your answer correct to 1 decimal place.
(Total for question = 4 marks)

Q12.

Diagram NOT

accurately drawn

Calculate the length of $A C$.
Give your answer correct to 3 significant figures.

Q13.

Diagram NOT
accurately drawn

Calculate the length of $A C$.
Give your answer correct to 3 significant figures.

Q14.

The diagram shows triangle $A B C$.

$A B=9 \mathrm{~cm} \quad B C=15 \mathrm{~cm}$
D is the point on $A C$ such that $A D=5 \mathrm{~cm}$.
Angle $B A C=90^{\circ}$
Calculate the size of angle x.
Give your answer to the nearest degree.
\qquad

Mark Scheme

Q1.

use of cos		3	M1	cos must be selected for use in trig ratio NOT Cosine	or M2 for \sin and $\frac{\sqrt{" 21.36^{\prime \prime}}}{9.5}$ following correct Pythagoras or M2 for tan and $\frac{\sqrt{121.36^{\prime \prime}}}{8.3}$
$\cos \left(" x^{\prime \prime}\right)=\frac{8.3}{9.5}(=0.87 \ldots)$ or $(" x "=) \cos ^{-1}\left(\frac{8.3}{9.5}\right)$			M1		following correct Pythagoras or correct Pythag and then correct use of sine or cosine rule with " 21.36 "
	29.1		A1	$\begin{aligned} & \hline \text { for ans rou } \\ & \text { (29.1103.. } \end{aligned}$	$\text { ling to } 29.1$
					Total 3 marks

Q2.

Question Number	Working	Answer	Mark	Notes

	tan chosen		3	M1	for \tan chosen	M1 for sin and 3.8
	$\frac{3.8}{5.2}$ or 0.7307...				for $\frac{3.8}{5.2}$ or 0.7307... oe	$\frac{3.8}{\sqrt{41.48^{1}}}$ following correct Pythagoras and A1 for 0.5900...
		36.2		A1	for answer rounding to 36.2	
				Total 3 marks		

Q3.

Question Number	Working	Answer	Mark	Notes

	use of cos		3	M1	cos must be selected for use in trig ratio NOT Cosine Rule	or M2 for \sin and $\frac{\sqrt{" 21.36^{\prime}}}{9.5}$ following correct Pythagoras or M2 for \tan and $\sqrt{" 21.36^{\prime \prime}}$
	$\begin{aligned} & \cos \left(" x x^{n}\right)= \\ & \frac{8.3}{9.5}(=0.87 \ldots) \\ & \text { or } \\ & \left(" x x^{n}=\right) \cos ^{-1} \\ & \left(\frac{8.3}{9.5}\right) \end{aligned}$			M1		$\frac{\sqrt{" 21.36^{1 "}}}{8.3}$ following correct Pythagoras or correct Pythag and then correct use of sine or cosine rule with "21.36"
		29.1		A1	for awrt 29.1	e.g. (29.1103...)
						Total 3 marks

Q4.

| Question
 Number | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | $5.2^{2}+3.8^{2}$ or $27.04+14.44$ or
 41.48 | | 3 | M1for squaring
 and adding |
| | $\sqrt{5.2^{2}+3.8^{2}}$ | | | M1(dep) for
 square root |
| | | 6.44 | | A1for answer
 rounding to
 6.44 |
| | | | | Total 3 marks |

Q5.

Q6.

Question	Working	Answer	Mark	Notes		
	$\begin{aligned} & \sin 38=\frac{P Q}{12.2} \text { or } \\ & \cos (90-38)=\frac{P Q}{12.2} \text { oe } \end{aligned}$			M1	$\begin{aligned} & 12.2 \cos 38(9.61 \ldots) \text { and } \\ & 12.2^{2}-"^{9.61 " 2} \quad(=56.4 . .) \end{aligned}$	correct statement of sine rule eg $\frac{P Q}{\sin 38}=\frac{12.2}{\sin 90}$
	$\begin{aligned} & (" P Q "=12.2 \times \sin 38 \text { or } \\ & 12.2 \cos (90-38) \mathrm{oe} \end{aligned}$			M1	$\sqrt{756.4 "}$	correct expression for x $\mathrm{eg}(\mathrm{PQ})=\frac{12,2 \sin 38}{\sin 90}$
		7.51	3	A1 awrt 7.51		
						Total 3 marks

Q7.

Question	Working	Answer	Mark	Notes		
	$\begin{aligned} & \sin 38=\frac{P Q}{12.2} \text { or } \\ & \cos (90-38)= \\ & \frac{P Q}{12.2} \text { oe } \end{aligned}$			M1	$\begin{aligned} & 12.2 \cos 38 \\ & (9.61 \ldots) \text { and } \\ & 12.2^{2}-" 9.61^{\prime \prime} \\ & (=56.4 . .) \\ & \hline \end{aligned}$	correct statement of sine rule eg $\frac{P Q}{\sin 38}=\frac{12.2}{\sin 90}$
	$\begin{aligned} & \left(" P Q Q^{\prime \prime}=\right) 12.2 \\ & \times \sin 38 \text { or } \\ & 12.2 \cos (90- \\ & 38) \text { oe } \end{aligned}$			M1	$\sqrt{ }{ }^{56.4}{ }^{\prime \prime}$	correct expression for PQ eg $(\mathrm{PQ})=\frac{12.2 \sin 38}{\sin 90}$
		7.51	3	A1 awrt 7.51		
						Total 3 marks

Q8.

Q	Working	Answer	Mark	Notes
(a)	$\begin{aligned} & \left(\mathrm{AC}^{2}=\right) 5^{2}+7^{2}(=74) \\ & \left(\mathrm{AG}^{2}=\right)^{\prime \prime} 74^{\prime \prime}+3^{2}(=83) \\ & (\mathrm{AG}=) \mathrm{V}^{\prime \prime} 83^{\prime \prime} \end{aligned}$	9.11	3	$\begin{aligned} & \begin{array}{l} \text { M1 or AC }=8.6 . . \quad \text { or }\left(\mathrm{BG}^{2}\right)= \\ 3^{2}+7^{2}(=58) \text { or }\left(\mathrm{AF}^{2}\right)=3^{3}+5^{2} \\ \\ \left(\mathrm{AG}^{2}=\right) \end{array} \\ & \text { " } 58^{\prime \prime}+5^{2}(=83) \\ & \\ & \text { M1 ft }(\text { dep on M1 }) \\ & \text { for } V\left(5^{2}+7^{2}+3^{2}\right) \\ & \text { A1 awrt } 9.11 \end{aligned}$
(b)	$\sin \theta=3 / \sqrt{\prime \prime} 83^{\prime \prime}$			M1 \quad or $\cos \theta=\sqrt{\prime \prime} 74^{\prime \prime} / \sqrt{" 1} 83^{\prime \prime}$ or $\tan \theta=3 / \sqrt{ }{ }^{\prime \prime} 74^{\prime \prime}$
		19.2	2	$\text { or } \cos \theta=\frac{74^{\prime \prime}+" 83^{\prime \prime}-9}{2 \times \sqrt{ } \sqrt{\prime \prime}^{\prime \prime} 4^{\prime} \times \sqrt{ } / 83^{\prime \prime}}$ A1 awrt 19.2 or 160.8
				Total 5 marks

Q9.

Question	Working	Answer	Mark	Notes		
	Angle $A M B$ identified			M1	Angle $A M B$ identified	
	$(B M)=15^{2}+6^{2}$			M1	$\left(A M^{2}=9^{2}+15^{2}+6^{2}\right.$	M2 for $B M=16.1-16.2$ or$A M=18.4-18.5$
	$\begin{aligned} & (B M=) \sqrt{15^{2}+6^{2}} \\ & \text { or } \sqrt{261} \\ & \text { or } 3 \sqrt{29}(=16.1 \ldots) \end{aligned}$			M1 (dep on previous M1)	$\begin{aligned} & (A M=) \sqrt{9^{2}+15^{2}+6^{2}} \text { or } \\ & \sqrt{342} \text { or } 3 \sqrt{38}(=18.49 \ldots) \end{aligned}$	
	$\tan A M B=\frac{9}{\sqrt{261}}$			M1	$\begin{aligned} & \sin A M B=\frac{9}{{ }^{118.49^{*}}}(\times \sin 90)(=0.4867) \text { etc or } \\ & \cos A M B=\frac{16.16^{\prime \prime}}{{ }^{18.49^{\prime}}}(=0.8735) \text { etc or } \end{aligned}$ correct method to find $A M$ and $B M$ with correct substitution into Cosine rule and correct rearrangement to make $\cos A M B$ the subject	
		29.1	5	A1 for 29.1-29.25 NB. If angle BAM (60.9) found then maximum of M0M1M1M0A0 unless this is used to go onto find angle AMB		
						Total 5 marks

Q10.

Question	Working	Answer	Mark	Notes	
	$\begin{aligned} & \left(B C^{2}=\right) 3.8^{2}+6.4^{2}-2 \times 3.8 \times 6.4 \cos 120^{\circ} \\ & (=79.72) \\ & \left(B C^{2}=\right) 14.44+40.96+24.32(=79.72) \end{aligned}$			M1 correct use of Cosine rule to find $B C$ M1 correct order of operations A 1 for $B C=8.9-8.93$ or $\sqrt{79.72}$ or $\sqrt{\frac{1993}{25}}$ oe	Award M2 A1 for $B C=8.9-8.93$ or $\sqrt{79.72}$ or $\sqrt{\frac{1993}{25}}$ oe
	$\begin{aligned} & \frac{\sin C}{6.4}=\frac{\sin 120}{8.92 \ldots "} \text { or } \\ & 6.4^{2}=3.8^{2}+" 8.92^{\prime \prime 2}- \\ & 2 \times 3.8 \times " 8.92^{\prime \prime} \times \cos C \\ & \sin C=\frac{6.4 \times 0.866 \ldots}{" 8.92 .{ }^{*}}(=0.62 \ldots) \text { or } \\ & \cos C=\frac{3.8^{2}+* 8.92^{* 2}-6.4^{2}}{2 \times 3.8 \times^{*} 8.92^{*}}(=0.78 \ldots) \\ & C=38-38.5 \end{aligned}$			M1 correct use of Sine rule or Cosine rule to find angle C M1 correct rearrangement	Award M2 for $C=38-38.5$ Award M2 for $B=21.5-22$ and $C=180-120-B$
		068	6	A1 (0)68-(0)68.4	
	Alternative $C D$ is the perpendicular from C to $B A$ produced. $\angle C A D=60^{\circ} \text { or } A C D=30^{\circ}$			```M1 uses triangle CAD and }\angleCAD=6\mp@subsup{0}{}{\circ}\mathrm{ or }ACD 30 CD may not be drawn in but can be implied```	
	$A D=3.8 \cos 60^{\circ}$ or $3.8 \sin 30(=1.9)$			M1 for correct method to find horizontal length	
	$B D=6.4+1.9(=8.3)$			A 1 for $B D=8.3$	
	$\begin{aligned} & C D=3.8 \sin 60 \text { or } 3.8 \cos 30(=3.29) \\ & \tan B C D=\frac{8.3}{3.8 \sin 60} \text { oe } \end{aligned}$			$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \end{array}$	
		068		A1 (0)68-(0)68.4	
				Total 6 marks	

Q11.

Ques	Working	Answer		Notes	
	$\begin{aligned} & S R=(60 \div 15) \times 2 \\ & (=8) \end{aligned}$	28.1	4	M1	
	$\tan S Q R=\frac{8^{\prime}}{15}$			M1	(or M1 for $\sin S Q R=\frac{8^{\prime}}{17}$ ' or $\cos S Q R=\frac{15}{17}$ ' where ' 17 ' comes from a fully correct method)
	$S Q R=\tan ^{-1}\left(\frac{8^{\prime}}{15}\right)$				(or $\sin ^{-1}\left(\frac{\prime 8^{\prime}}{\prime 17^{\prime}}\right)$ or $\cos ^{-1}\left(\frac{15}{\prime 17^{\prime}}\right)$)
				A1	28.07-28.1
					Total 4 marks

Q12.

Q	Working	Answer	Mark	Notes	
	$\begin{aligned} & \cos 22=\frac{14.9}{A C} \text { or } \\ & \sin (90-22)=\frac{14.9}{A C} \text { or } \\ & \frac{A C}{\sin 90}=\frac{14.9}{\sin (90-22)} \\ & \text { oe } \end{aligned}$			M1	M1 for $B C=14.9 \times \tan 22 \text { oe }(=$ $6.019-6.02)$ AND $\left(A C^{2}=\right) 14.9^{2}+6.019 \ldots 2$
	$\begin{aligned} & (A C=) \frac{14.9}{\cos 22} \text { or } \\ & (A C=) \frac{14.9}{\sin 68}(\times \sin \\ & 90) \end{aligned}$			M1	$\begin{aligned} & \text { M1 for }(A C)= \\ & \sqrt{14.9^{2}+6.019 \ldots{ }^{2}} \end{aligned}$
		16.1	3	A1	Accept 16.07-16.1
					Total 3 ma

Q13.

Q	Working	Answer	Mark	Notes	
	$\begin{align*} & \cos 22=\frac{14.9}{A C} \text { or } \\ & \sin (90-22)=\frac{14.9}{A C} \text { or } \\ & \frac{A C}{\sin 90}=\frac{14.9}{\sin (90-22)} \text { oe or } \end{align*}$			M1	M1 for $B C=14.9 \times \tan 22 \text { oe }(=6.019-$ AND $\left(A C^{2}=\right) 14.9^{2}+6.019 \ldots^{2}$
	$\begin{aligned} & (A C=) \frac{14.9}{\cos 22} \text { or } \\ & (A C=) \frac{14.9}{\sin 68}(\times \sin 90) \end{aligned}$			M1	M1 for $(A C)=\sqrt{14.9^{2}+6.019 \ldots{ }^{2}}$
		16.1	3	A1 Accept 16.07-16.1	
					Total 3 ma

Q14.

Q	Working	Answer	Mark	Notes	
	$\begin{aligned} & \text { (Angle } A B D=) \tan ^{-1}\left(\frac{5}{9}\right) \text { or (Angle } \\ & \left.A D B=) \tan ^{-1}\left(\frac{9}{5}\right) \text { or (Angle } A B C=\right) \\ & \cos ^{-1}\left(\frac{9}{15}\right) \text { or }(\text { Angle } A C B=) \sin ^{-1}\left(\frac{9}{15}\right) \\ & (B D=) \sqrt{9^{2}+5^{2}} \text { or }(A C=) \sqrt{15^{2}-9^{2}} \\ & (D C=) \sqrt{15^{2}-9^{2}}-5 \end{aligned}$		4	M1	For correct method to find angle $A B D$ or $A D B$ or $A B C$ or $A C B$ or for correct method to find side $B D, A C$ or $D C$.
				A1	For angle $A B D=29 .(0546 \ldots)$ or for angle $A D B=60$ (9453 ...) or for angle $A B C=53 .(1301 \ldots)$ or for angle $A C B=36$ (8698...) or For $B D=\sqrt{106}$ or 10 .(2956 \ldots) or for $A C=12$ or for $D C=7$ Accept rounded or truncated to at least 2SF
	$\begin{aligned} & \text { E.g. }\left(x=\cos ^{-1}\left(\frac{9}{15}\right)-\tan ^{-1}\left(\frac{5}{9}\right)\right. \text { or } \\ & (x=) \\ & 180-90-" 29 .(0546 \ldots)^{\prime-"} 36 .(8698 \ldots) " \\ & \text { or } \\ & \cos x=\frac{15^{2}+" 10 .(2956 \ldots)^{n 2}-7^{2}}{2 \times 15 \times " 10 .(2956 \ldots) "} \text { or } \cos x \\ & =0.913(009) \text { or } \\ & \sin x=\frac{7 \sin " 36 .(8698 \ldots)^{\prime \prime}}{\sqrt{106}} \text { or } \sin x= \\ & \frac{7 \sin " 119 .(054 \ldots)^{\prime \prime}}{15} \text { or } \\ & \sin x=0.407(940 \ldots) \end{aligned}$			M1	For a complete method to find x or $\sin x$ or $\cos x$ $\text { Accept } 0.912 \leq \cos x \leq$ 0.9152 Accept $0.407 \leq \sin x \leq$ 0.413
		24		A1	Awrt 24
					Total 4 marks

